

Laboratoire National des Champs Magnétiques Intenses, 25 Rue des Martyrs, 38042 Grenoble

La chimie de Coordination, un outil pour la conception de Matériaux Magnétiques Moléculaires

Nicolas BREFUEL

Aspet, 12-15 Octobre 2009

nicolas.brefuel@grenoble.cnrs.fr

Sommaire

1- Matériaux moléculaires: pourquoi et comment ?

- Intérêts / limitations
- Propriétés / spécificités...
- Exemples (molécules aimants ou SMM)

2- La transition de spin des complexes du Fe^{II}

- Synthèse rationnelle
- Correlation magneto-structurales
- Spectroscopie Mössbauer
- Photomagnétisme...

1- Matériaux moléculaires: pourquoi et comment ?

Chimie Moléculaire ?

Synthèse organique: préparation de nouveaux ligands organiques (C, H, N, S, O)

Chimie « inorganique »: sels de métaux de transition (3d, 4d, 5d, lanthanides)

+

Chimie de coordination (douce)

Matériaux Moléculaires

Poudre microcristalline, amorphe

Monocristaux

« De la molécule au matériau »

Synthèse Rationnelle d'architectures moléculaires

Comment ? La Chimie de Coordination

Paramètres ajustables:

- Degré d'oxydation du centre métallique
- Nature de l'ion métallique (3d, 4d, 4f, 5d...)
- Coordinence (tétra, hexa, octacoordinné...)
- Nature du ligand: mono, bi, tridente...

Quelles interactions ?

- Liaison de coordination (fortes)
- Interactions faibles (liaisons hydrogène, interactions π - π ...)

Quelques exemples issus de la chimie des cyanures...

Molécules Aimants

- Fort Moment Magnétique

- Forte anisotropie magnétique axiale

SMM (Single Molecule Magnet) et **SCM** (single Chain Magnet) [nano amants et nano fils]

Vers la miniaturisation de la taille des éléments de mémoire...

Le cluster Mn_p

Spintronique Moléculaire

Wolfgang Wernsdorfer

Groupe Nanospintronique et Transport Moléculaire

Déposition couches minces

UNIVERSITÀ DEGLI STUDI Di modena e reggio emilia

2- Les complexes à transition de spin

La transition de spin (TS)

P. Gütlich, A. Hauser, H. Spiering, *Angew. Chem. Int. Ed. Engl.* (1994) A. Bousseksou, G. Molnar, G. Matouzenko, *Eur. J. Inorg. Chem.* (2004)

A l'état solide....

Boucle d'Hysteresis: $\Delta T = T_{12} \uparrow -T_{12} \downarrow$

Thermochromisme / Détection Optique

Effet mémoire

Synthèse Rationnelle de complexes à TS

Complexe cible: ligand tetradente + 2 anions pseudohalogénures NCX-

Propriétés Magnétiques de la famille [FeL(NCS)₂]

N. Bréfuel et al., Eur. J Inorg. Chem. (2007)

Propriétés Magnétiques de $[FeL^{12}(NCS)_2]$. $H_2O(R_1 = H)(1)$

Transition en deux étapes (espèce déshydratée)
2^{nb} étape avec hystérésis (11 K) at ~ 300 K
Deux sites Fe^{II} distinguables ?

Spectres Mössbauer de [FeL¹² (NCS)₂].H₂O (**1**)

Propriétés Magnétique de $[FeL^{D} (NCS)_2] (R_1 = CH_3) (2)$

TS du 1^e ordre, T₁₂ = 315 K
Boucle d'hystérésis de 4K
Transition de phase structurale ?

Structure Moléculaire de [FeL^{pi} (NCS)₂] (2)

Structure Supramoléculaire de [FeL^{II} (NCS)₂] (2)

Réarrangement du réseau de liaisons hydrogène

Systèmes supramoléculaires: effet du contre-anion

N. Bréfuel et al., Inorg. Chem. (2006)

Variation du paramètre de maille a de [FeH₂L^{2Me}](ClO₄), (3)

<u>Spin</u> : T_{121} =169K, T_{121} =174K (+ graduelle)

Variation brutale du paramètre de maille avec hystérésis (séparation de phase) Transitions de phase magnétique/structurale du 1^{ier} ordre

Effet LIESST pour $Fe[H_2L^{2Me}](ClO_4)_2$ (3)

- Effet LIESST (quasi quantitatif) et reverse LIESST observés
- Relaxation du PIHS vers l'état BS en deux étapes (38K et 59K)

Origine d'un tel processus ?

Photocristallographie de $[FeH_2L^{2Me}](ClO_4)_2(3)$

Evolution de l'état PIHS en f(T)

Relaxation de l'état HS PI

Evolution du paramètre a en f(t) à 45K

En résumé...

H. Watanabe, N. Bréfuel et al., soumis

Effet du changement du contre-anion

★ Effets géométriques sur le réseau de liaisons H: conséquences sur la TS ?

★ Remplacer PF_6^- par AsF_6^- ou SbF_6^- : effet de taille sur la TS ?

Etudes magnétiques et Mössbauer de [FeH₂L^{2Me}]((PF₆)₂ (4)

TS en deux étapes: HS ⇄ (½HS+½LS) ⇄ LS

Etude cristallographique de (4)

	HS	site 1	site 2	site 1	site 2
Fe-N> (Å)	2.190(2)	2.13(1)	2.05(1)	2.012(3)	2.012(3)

Effet LIESST pour $Fe[H_2L^{2Me}](PF_6)_2(4)$

Relaxation de l'état HS PI vers l'état BS en deux étapes (40K et 61K)

• Etat HS photoinduit distinct de l'état HS "thermique"

Structure	250 K HS	HS PI site 1	HS PI site 2	-
<fe-n> (Å)</fe-n>	2.190(2)	2.17(1)	2.18(1)	

En résumé...

N. Bréfuel et al., accepté Angew.Chem.Int.Ed. 2009

Etudes magnétiques et Mössbauer de FeH₂L^{2Me} (AsF₆)₂ (5)

 $\delta = 1.08(7) \text{ mm s}^{-1}$,

∆EQ = 1.87(1) mm s⁻¹

TS graduelle et complète, en deux étapes (1/3, 2/3 ?) avec hystérésis

Etude cristallographique de (7)

Structure	250 K	105 K	105 K	105 K	80 K BS	80 K BS
	HS	<mark>site 1</mark>	site 2	site 3	site 1	site 2
<fe-n> (Å)</fe-n>	2.187(2)	2.103(1)	2.056(7)	2.004(1)	2.025(3)	2.021(3)

A 105 K: 30 molécules/maille

- •10 molécules **BS** (Fe-N = 2.004 Å)
- 8 molécules majoritairement BS (Fe-N = 2.056 Å)
- 12 molécules **HS** (Fe-N = 2.103 Å)
 - Bon accord entre les propriétés magnétiques et structurales
 - Mise en ordre en « losange »

Etudes magnétiques et Mössbauer de FeH₂L² (SbF₆)₂ (6)

Résolution Spontanée et chiralité

La famille [FeH₂L^{2Me}]X₂

La TS peut être modulée par la nature du contre-anion

Remerciements

Prof. J.-P. Tuchagues, Dr. A Bousseksou, Dr. G. Molnar, Dr. S Cobo, J. Come *LCC, Toulouse*

S. Imatomi, H. Torigoe, H. Hagiwarara, Prof. N. Matsumoto,

A. Eguchi, Dr. H. Watanabe, Prof. K. Tanaka, *Department of Physics, Kyoto University*

Dr. L. Toupet, Prof. E. Collet Institut de Physique de Rennes

Prof. M. Kojima Department of Chemistry, Okayama University

Merci pour votre attention !!

TS et chiralité...

Y. Sunatsuki, N. Matsumoto et al., Angew. Chem.Int. Ed. 2003

Complexe homochiral à transition de spin et valence mixte (Fe^I/Fe^{II})

Le cas de [FeHL^{2Me}] ClO_4 (4)

Structure Cristallographique de [FeHL²⁴]ClO₄(4)

Effet LIESST de (7) et (8)

Effet LIESST quantitatif

La spectroscopie Mössbauer ⁵⁷ Fe

 ΔE_{Q} = éclatement quadrupolaire δ = déplacement isomérique δ = déplacement isomérique

Structure Moléculaire de [FeH₂L^{2Me}](ClO₄)₂

Propriétés Magnétiques de [FeL¹² (NCSe)₂].H₂O (2)

Complexe Déshydraté : 2 sites Fe^{II}

Evolution du paramètre a en f(t) à 45K

- Séparation de phase entre les états HT et BT
- Décalage entre la relaxation du réseau et de spin: temps d'incubation

Origine de la différence des relaxations de spin et de réseau ?

Maille "élastique" ?